## R Programming Notes – Part 2

In an older post, I discussed a number of functions that are useful for programming in R. I wanted to expand on that topic by covering other functions, packages, and tools that are useful. Over the past year, I have been working as an R programmer and these are some of the new learnings that Continue reading R Programming Notes – Part 2

## R Programming Notes – Part 1

I’ve been on a note taking binge recently. This post covers a variety of topics related to programming in R. The contents were gathered from many sources and structured in such a way that it provided the author with a useful reference guide for understanding a number of useful R functions. DO.CALL The do.call function Continue reading R Programming Notes – Part 1

## Examining the Tweeting Patterns of Prominent Crossfit Gyms

A. Introduction The growth of Crossfit has been one of the biggest developments in the fitness industry over the past decade. Promoted as both a physical exercise philosophy and also as a competitive fitness sport, Crossfit is a high-intensity fitness program incorporating elements from several sports and exercise protocols such as high-intensity interval training, Olympic weightlifting, Continue reading Examining the Tweeting Patterns of Prominent Crossfit Gyms

## Turning Data Into Awesome With sqldf and pandasql

Both R and Python possess libraries for using SQL statements to interact with data frames. While both languages have native facilities for manipulating data, the sqldf and pandasql provide a simple and elegant interface for conducting tasks using an intuitive framework that’s widely used by analysts.             R and sqldf sqldf(“SELECT COUNT(*) FROM Continue reading Turning Data Into Awesome With sqldf and pandasql

## Semiparametric Regression in R

A. INTRODUCTION When building statistical models, the goal is to define a compact and parsimonious mathematical representation of some data generating process. Many of these techniques require that one make assumptions about the data or how the analysis is specified. For example, Auto Regressive Integrated Moving Average (ARIMA) models require that the time series is Continue reading Semiparametric Regression in R

## Packages for Getting Started with Time Series Analysis in R

A. Motivation During the recent RStudio Conference, an attendee asked the panel about the lack of support provided by the tidyverse in relation to time series data. As someone who has spent the majority of their career on time series problems, this was somewhat surprising because R already has a great suite of tools for Continue reading Packages for Getting Started with Time Series Analysis in R

## Data.Table by Example – Part 3

For this final post, I will cover some advanced topics and discuss how to use data tables within user generated functions. Once again, let’s use the Chicago crime data. Let’s start by subseting the data. The following code takes the first 50000 rows within the dat dataset, selects four columns, creates three new columns pertaining Continue reading Data.Table by Example – Part 3

## Data.Table by Example – Part 2

In part one, I provided an initial walk through of some nice features that are available within the data.table package. In particular, we saw how to filter data and get a count of rows by the date. Let us now add a few columns to our dataset on reported crimes in the city of Chicago. Continue reading Data.Table by Example – Part 2

## Data.Table by Example – Part 1

For many years, I actively avoided the data.table package and preferred to utilize the tools available in either base R or dplyr for data aggregation and exploration. However, over the past year, I have come to realize that this was a mistake. Data tables are incredible and provide R users with a syntatically concise and Continue reading Data.Table by Example – Part 1

## Working With SEM Keywords in R

The following post was republished from two previous posts that were on an older blog of mine that is no longer available. These are from several years ago, and related to two critical questions that I encountered. One, how can I automatically generate hundreds of thousands of keywords for a search engine marketing campaign. Two, how Continue reading Working With SEM Keywords in R